skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Meyer, Dalton L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Most living reptile diversity is concentrated in Squamata (lizards, including snakes), which have poorly known origins in space and time. Recently, †Cryptovaranoides microlaniusfrom the Late Triassic of the United Kingdom was described as the oldest crown squamate. If true, this result would push back the origin of all major lizard clades by 30–65 Myr and suggest that divergence times for reptile clades estimated using genomic and morphological data are grossly inaccurate. Here, we use computed tomography scans and expanded phylogenetic datasets to re-evaluate the phylogenetic affinities of †Cryptovaranoidesand other putative early squamates. We robustly reject the crown squamate affinities of †Cryptovaranoides, and instead resolve †Cryptovaranoidesas a potential member of the bird and crocodylian total clade, Archosauromorpha. Bayesian total evidence dating supports a Jurassic origin of crown squamates, not Triassic as recently suggested. We highlight how features traditionally linked to lepidosaurs are in fact widespread across Triassic reptiles. Our study reaffirms the importance of critically choosing and constructing morphological datasets and appropriate taxon sampling to test the phylogenetic affinities of problematic fossils and calibrate the Tree of Life. 
    more » « less
  2. Abstract Squamata is the most diverse clade of terrestrial vertebrates. Although the origin of pan-squamates lies in the Triassic, the oldest undisputed members of extant clades known from nearly complete, uncrushed material come from the Cretaceous. Here, we describe three-dimensionally preserved partial skulls of two new crown lizards from the Late Jurassic of North America. Both species are placed at the base of the skink, girdled, and night lizard clade Pan-Scincoidea, which consistently occupies a position deep inside the squamate crown in both morphological and molecular phylogenies. The new lizards show that several features uniting pan-scincoids with another major lizard clade, the pan-lacertoids, in trees using morphology were convergently acquired as predicted by molecular analyses. Further, the palate of one new lizard bears a handful of ancestral saurian characteristics lost in nearly all extant squamates, revealing an underappreciated degree of complex morphological evolution in the early squamate crown. We find strong evidence for close relationships between the two new species and Cretaceous taxa from Eurasia. Together, these results suggest that early crown squamates had a wide geographic distribution and experienced complicated morphological evolution even while the Rhynchocephalia, now solely represented by the tuatara, was the dominant clade of lepidosaurs. 
    more » « less
  3. Abstract The rapid radiation and dispersal of crown reptiles following the end‐Permian mass extinction characterizes the earliest phase of the Mesozoic. Phylogenetically, this early radiation is difficult to interpret, with polytomies near the crown node, long ghost lineages, and enigmatic origins for crown group clades. Better understanding of poorly known taxa from this time can aid in our understanding of this radiation and Permo‐Triassic ecology. Here, we describe an Early Triassic specimen of the diapsidPalacrodonfrom the Fremouw Formation of Antarctica. WhilePalacrodonis known throughout the Triassic and exhibits a cosmopolitan geographic range, little is known of its evolutionary relationships. We recoverPalacrodonoutside of crown reptiles (Sauria) but more crownward thanYoungina capensisand other late Permian diapsids. Furthermore,Palacrodonpossesses anatomical features that add clarity to the evolution of the stapes within the reptilian lineage, as well as incipient adaptations for arboreality and herbivory during the earliest phases of the Permo–Triassic recovery. 
    more » « less